

Figure 4. Deviation plot for ultrasonic speed u.

ultrasonic speeds are strongly dependent upon pressure close to the saturated vapor pressure especially at high temperature. This tendency is similar to that of other thermodynamic properties, i.e., the pVT relation (2) and isobaric heat capacity (4).

From the coefficients for eq 2, the speed in the liquid phase  $u_{p_{\star}}$  at the vapor pressure  $p_{s}$  was calculated, and the results are also shown in Table II with the  $p_s$  derived from the equation reported in ref 14. Sakiades and Costes (15) estimated the additivity coefficient B from molecular structural considerations using the experimental u values, and calculated the value of speed u by Rao's equation (16)  $[u = (B\rho/M)^3$ , where  $\rho =$ density, M = molecular weight]. It is well-known that this method can be adapted conveniently to some organic liquids at atmospheric pressure. Kokernak and Feldman (12) measured the ultrasonic speed in the liquid phase of dichlorodifluoromethane (R12), and calculated the B value for the fluorine atom. From this value and the B values of other atoms estimated by Sakiades and Costes, the speeds in some liquids including fluorinated hydrocarbons were estimated. According to their report, the u value in the liquid phase of dichlorotetrafluoroethane (R114) at 298.15 K was 478.5 m·s<sup>-1</sup>. However,

this value is lower by about 15% than that obtained by eq 2 in this work. The vapor pressures are 0.6516 MPa for R12 (17) and 0.2144 MPa for R114 (14) at 298.15 K. In ref 12, the ultrasonic speed in R114 was obtained by using the additivity coefficients of fluorine atom taken from the u value in R12, which has a different vapor pressure from that for R114. Thus, a large discrepancy in ultrasonic speed would be expected between these two refrigerants. It may be presumed that application of this theoretical method to predict the ultrasonic speed in refrigerants is unreasonable. Consequently, direct measurements of ultrasonic speed in the liquid phase of individual refrigerants are expected to continue in the future.

Registry No. R114, 76-14-2.

## Literature Cited

- Martin, J. J. J. Chem. Eng. Data 1980, 5, 334.
   Wilson, D. P.; Hules, K. R. Proc. 8th Symp. Thermophys. Prop., New York 1981, Vol. II, 361.
- Kudchadker, S. A.; Kudchadker, A. P. J. Phys. Chem. Ref. Data (3) 1978, 7, 1285.
- Kolesov, V. P.; Kosarukina, E. A.; Zhogin, D. Yu.; Poloznikova, M. E.; Pentin, Yu. A. *J. Chem. Thermodyn.* **1981**, *13*, 115. Gammon, B. E. *J. Chem. Phys.* **1978**, *64*, 2556. (4)
- Bobic, M. J. Chem. Thermodyn. 1978. 10, 1137 (6)
- Takagi, T.; Teranishi, H. J. Chem. Thermodyn. **1982**, *14*, 577. Takagi, T.; Teranishi, H. J. Chem. Thermodyn. **1982**, *14*, 577.

- (10) Perilshtein, I. I., Kusiyalkin, G. A. Kholod. Tekh. 1978, 341.
   (10) Perilshtein, I. I.; Kusiyalkin, G. A. Kholod. Tekh. 1978, 38.
   (11) Doring, R. Int. Congr. Refrig. 1978, 2, 77.
   (12) Kokemak, R. P.; Feldman, C. L. ASHRAE J. 1971, 13(7), 59.
- (13) Takagi, T.; Teranishi, H. J. Soc. Mater. Sci., Jpn. 1984, 33, 134.
- (14) Hasegawa, N.; Wada, S.; Uematsu, M.; Watanabe, K. Proc. 16th Int. (14) hasegawa, N.; Wada, S.; Oematsu, M.; Watanabe, N. *Proc. Tetr. Int. Congr. Refrig., Paris* 1984, Vol. II, 31.
   (15) Saklades, B. C.; Costes, J. *AIChE J.* 1955, *1*, 274.
   (16) Rao, R. *J. Chem. Phys.* 1941, *9*, 682.
   (17) Michels, A.; Wassenaar, T.; Wolkers, G. L.; Prins, CHR.; Klundert, L. v.
- d. J. Chem. Eng. Data 1986, 11, 449.

Received for review April 22, 1985. Accepted August 30, 1985.

# Viscosities, Densities, and Activation Energies of Viscous Flow of the Ternary Systems *n*-Hexane–Benzyl Alcohol–Toluene, *n*-Hexane–Benzyl Alcohol–Chlorobenzene, and *n*-Hexane–Benzyl Alcohol-1-Hexanol and Their Partially Miscible Binary Subsystem *n*-Hexane–Benzyl Alcohol at 30, 40, 50, and 60 $^{\circ}$ C

## Ramesh P. Singh,\* Chandreshwar P. Sinha,<sup>†</sup> and Basuki N. Singh<sup>‡</sup>

Department of Chemistry, Bhagalpur College of Engineering, Bhagalpur-813210, India

Introduction

Mixture viscosities and densities of the partially miscible ternary systems of toluene, chlorobenzene, and 1-hexanol with their partially miscible binary subsystem n-hexane-benzyl alcohol were measured at 30, 40, 50, and 60 °C. Activation enthalpies and entroples for viscous flow have been obtained and their variations with composition have been discussed.

#### <sup>†</sup> Present address: Department of Chemistry, Ananda Chandra College, Jalpalguri-735101, W. Bengal, India.

\* Present address: Department of Chemistry, Mahendra Morang Campus, Biratnagar, Nepal.

Viscosities and activation energies of viscous flow of several binary as well as ternary mixtures, reported by us earlier (1-5), dealt with systems which are completely miscible in the temperature range studied. Herein are results of our similar investigation of the partially miscible ternary systems n-hexane (1)-benzyl alcohol (2)-toluene (3), n-hexane, (1)-benzyl alcohol (2)-chlorobenzene (3), and n-hexane (1)-benzyl alcohol (2)-1hexanol (3) and their partially miscible binary subsystem nhexane (1)-benzyl alcohol (2) at 30, 40, 50, and 60 °C.

#### **Experimental Section**

Materials. Liquids used were the same as in the previous studies (1-5). However, their purity, after fractional distillation

 Table I. Comparison of the Experimental and Literature Values of the Densities, Viscosities, and Refractive Indices for the

 Ternary Components Used

| parameter                   | <i>t</i> , °C | n-hexane      | toluene       | chlorobenzene  | 1-hexanol              | benzyl alcohol |
|-----------------------------|---------------|---------------|---------------|----------------|------------------------|----------------|
| $\rho$ , g mL <sup>-1</sup> | 25            | 0.6549        | 0.8623        | 1.1011         | 0.8160                 | 1.0413         |
| 1.0                         |               | $(0.65481)^a$ | $(0.86231)^a$ | $(1.1011)^{b}$ | $(0.81590)^a$          | $(1.04127)^a$  |
| η, cP                       | 25            | 0.299         | 0.552         | 0.758          | 4.59                   | $4.648^{d}$    |
|                             |               | $(0.2985)^a$  | $(0.5516)^a$  | $(0.7580)^{b}$ | $(4.5920)^{a}$         | $(4.650)^a$    |
| $n_{\rm D}$                 | 25            | 1.37225       | 1.49415       | 1.52165        | 1.41610                | 1.53840        |
| -                           |               | $(1.37226)^a$ | $(1.49413)^a$ | (1.52160)°     | (1.41610) <sup>a</sup> | $(1.53837)^a$  |
| М                           |               | $86.178^{a}$  | $92.142^{a}$  | $112.56^{a}$   | $102.178^{a}$          | 108.141°       |

<sup>a</sup>Reference 11. <sup>b</sup>Reference 12. <sup>c</sup>Reference 13. <sup>d</sup>At 30 °C.

Table II. Experimental Densities  $\rho_m$  and Viscosities  $\eta_m$  and Corresponding Values of the Enthalpy of Activation  $\Delta H_m^*$ and Entropy of Activation  $\Delta S_m^*$  for Data Points in the Miscible Region of the Ternary System *n*-Hexane (1)-Benzyl Alcohol (2)-Toluene (3) at Different Temperatures

|         |               |               | $\rho_{\rm m}$ ,   |                          | $\Delta H_{\rm m}^{*}$ , | $\Delta S_{m}^{*},$                   |
|---------|---------------|---------------|--------------------|--------------------------|--------------------------|---------------------------------------|
| $X_1$   | $X_2$         | <i>t</i> , °C | g mL <sup>-1</sup> | $\eta_{\rm m},~{\rm cP}$ | cal mol <sup>-1</sup>    | cal mol <sup>-1</sup> K <sup>-1</sup> |
| 0.0487  | 0.3508        | 30            | 0.9121             | 0.9421                   | 3576.6                   | +0.813                                |
|         |               | 40            | 0.9075             | 0.8064                   | 2940.8                   | -1.30                                 |
|         |               | 50            | 0.9018             | 0.6759                   | 2384.4                   | -2.97                                 |
|         |               | 60            | 0.8970             | 0.5894                   | 1828.0                   | -4.60                                 |
| 0.1151  | 0.4183        | 30            | 0.9085             | 1.017                    | 4132.9                   | +2.48                                 |
|         |               | 40            | 0.9038             | 0.8606                   | 3497.1                   | +0.33                                 |
|         |               | 50            | 0.8969             | 0.7207                   | 2781.8                   | -1.89                                 |
|         |               | 60            | 0.8929             | 0.6307                   | 2145.9                   | -3.81                                 |
| 0.1671  | 0.2763        | 30            | 0.8703             | 0.7243                   | 3020.3                   | -0.554                                |
|         |               | 40            | 0.8659             | 0.6281                   | 2861.3                   | -1.11                                 |
|         |               | 50            | 0.8584             | 0.5432                   | 2781.8                   | -1.37                                 |
|         |               | 60            | 0.8525             | 0.4849                   | 2622.9                   | -1.89                                 |
| 0.2179  | 0.5754        | 30            | 0.9129             | 1.337                    | 4530.4                   | +3.21                                 |
|         |               | 40            | 0.9082             | 1.095                    | 4132.9                   | +1.86                                 |
|         |               | 50            | 0.9023             | 0.9064                   | 3656.1                   | +0.332                                |
|         |               | 60            | 0.8996             | 0.7729                   | 3179.2                   | -1.13                                 |
| 0.2889  | 0.6482        | 30            | 0.9085             | 1.502                    | 4609.9                   | +3.22                                 |
|         |               | 40            | 0.9036             | 1.239                    | 4132.9                   | +1.58                                 |
|         |               | 50            | 0.9009             | 0.9970                   | 3735.6                   | +0.371                                |
|         |               | 60            | 0.8976             | 0.8451                   | 3338.2                   | -0.849                                |
| 0.3455  | 0.5053        | 30            | 0.8704             | 1.046                    | 3338.3                   | -0.289                                |
|         |               | 40            | 0.8648             | 0.8841                   | 3099.7                   | -1.08                                 |
|         |               | 50            | 0.8574             | 0.7323                   | 2781.8                   | -2.02                                 |
|         | • • <b></b> • | 60            | 0.8528             | 0.6504                   | 2543.4                   | -2.77                                 |
| 0.4065  | 0.1574        | 30            | 0.7927             | 0.4985                   | 3020.3                   | +0.073                                |
|         |               | 40            | 0.7885             | 0.4475                   | 2702.3                   | -1.06                                 |
|         |               | 50            | 0.7845             | 0.3926                   | 2384.4                   | -2.06                                 |
|         |               | 60            | 0.7810             | 0.3497                   | 1987.0                   | -3.25                                 |
| 0.4843  | 0.2280        | 30            | 0.7921             | 0.5404                   | 2622.9                   | -1.42                                 |
|         |               | 40            | 0.7873             | 0.4833                   | 2463.9                   | -1.99                                 |
|         |               | 50            | 0.7799             | 0.4165                   | 2145.9                   | -2.94                                 |
| 0 5 450 | 0.0000        | 60            | 0.7760             | 0.3749                   | 1987.0                   | -3.42                                 |
| 0.5476  | 0.0696        | 30            | 0.7543             | 0.4044                   | 1907.5                   | -3.23                                 |
|         |               | 40            | 0.7480             | 0.3787                   | 1987.0                   | -3.01                                 |
|         |               | 50            | 0.7415             | 0.3309                   | 1987.0                   | -3.01                                 |
|         |               | 60            | 0.7341             | 0.2977                   | 2066.5                   | -2.77                                 |

Table III. Experimental Densities  $\rho_m$  and Viscosities  $\eta_m$ and Corresponding Values of the Enthalpy of Activation  $\Delta H_m^*$  and Entropy of Activation  $\Delta S_m^*$  for Data Points in the Miscible Region of the Ternary System *n*-Hexane (1)-Benzyl Alcohol (2)-Chlorobenzene (3) at Different Temperatures

|        |        |               | $\rho_{\rm m}$ ,   |                | $\Delta H_{\rm m}^{*}$ , | $\Delta S_{m}^{*}$ , |
|--------|--------|---------------|--------------------|----------------|--------------------------|----------------------|
| $X_1$  | $X_2$  | <i>t</i> , °C | g mL <sup>-1</sup> | $\eta_{m}, cP$ | cal mol <sup>-1</sup>    | cal mol-1 K-1        |
| 0.0474 | 0.3414 | 30            | 1.056              | 1.132          | 3815.0                   | +1.29                |
|        |        | 40            | 1.052              | 0.9617         | 3338.2                   | -0.322               |
|        |        | 50            | 1.047              | 0.8136         | 2861.3                   | -1.80                |
|        |        | 60            | 1.042              | 0.7091         | 2384.4                   | -3.24                |
| 0.1127 | 0.4096 | 30            | 1.019              | 1.178          | 3974.0                   | +1.70                |
|        |        | 40            | 1.016              | 0.9952         | 3656.1                   | +0.595               |
|        |        | 50            | 1.009              | 0.8308         | 3338.2                   | -0.404               |
|        |        | 60            | 1.006              | 0.7239         | 3020.2                   | -1.40                |
| 0.1630 | 0.2694 | 30            | 1.002              | 0.8984         | 3179.2                   | -0.405               |
|        |        | 40            | 0.9974             | 0.7747         | 2940.8                   | -1.22                |
|        |        | 50            | 0.9909             | 0.6496         | 2702.3                   | -1.91                |
|        |        | 60            | 0.9865             | 0.5751         | 2463.9                   | -2.64                |
| 0.2158 | 0.5700 | 30            | 0.9607             | 1.406          | 4450.9                   | +2.87                |
|        |        | 40            | 0.9549             | 1.178          | 3894.5                   | +0.963               |
|        |        | 50            | 0.9489             | 0.9565         | 3338.2                   | -0.743               |
|        |        | 60            | 0.9425             | 0.8219         | 2781.8                   | -2.44                |
| 0.2880 | 0.6464 | 30            | 0.9246             | 1.547          | 4768.8                   | +3.70                |
|        |        | 40            | 0.9191             | 1.280          | 4212.4                   | +1.78                |
|        |        | 50            | 0.9135             | 1.039          | 3735.6                   | +0.292               |
|        |        | 60            | 0.9080             | 0.8869         | 3179.2                   | 1.43                 |
| 0.3432 | 0.5019 | 30            | 0.9046             | 1.108          | 3974.0                   | +1.71                |
|        |        | 40            | 0.8984             | 0.9399         | 3656.1                   | +0.588               |
|        |        | 50            | 0.8928             | 0.7894         | 3338.2                   | -0.424               |
|        |        | 60            | 0.8870             | 0.6849         | 3020.2                   | -1.42                |
| 0.3986 | 0.1543 | 30            | 0.8904             | 0.5826         | 2781.8                   | -0.981               |
|        |        | 40            | 0.8876             | 0.5149         | 2463.9                   | -2.05                |
|        |        | 50            | 0.8818             | 0.4551         | 2066.5                   | -3.29                |
|        |        | 60            | 0.8765             | 0.4121         | 1748.6                   | -4.25                |
| 0.4780 | 0.2251 | 30            | 0.8545             | 0.6079         | 2861.3                   | -0.837               |
|        |        | 40            | 0.8501             | 0.5389         | 2543.4                   | -1.93                |
|        |        | 50            | 0.8427             | 0.4663         | 2225.4                   | -2.89                |
|        | 0.0004 | 60            | 0.8360             | 0.4176         | 1987.0                   | -3.61                |
| 0.5382 | 0.0684 | 30            | 0.8351             | 0.4615         | 2225.4                   | -2.42                |
|        |        | 40            | 0.8274             | 0.4167         | 2145.9                   | -2.72                |
|        |        | 50            | 0.8195             | 0.3667         | 2066.5                   | -2.94                |
|        |        | 60            | 0.8140             | 0.3368         | 1987.0                   | -3.22                |
|        |        |               |                    |                |                          |                      |

and drying, was rechecked by measuring their densities, viscosities, and refractive indices at  $25 \pm 0.1$  °C. The mean of the values from several experiments agreed with the corresponding literature values within allowable limits (Table I) in each case. Redistilled, deionized, and degassed water showing electrical conductivity less than 7.0  $\times 10^{-7}$  mhos cm<sup>-1</sup> was used for calibrating the pycnometers for density measurements.

**Experimental Measurements.** Ternary liquid mixtures in the miscible region of each system were prepared by weight as before (3, 4) by using a chemical balance with an accuracy of 0.0001 g. For preparing ternary liquid mixtures saturated with an immiscible component, appropriate quantities of the

pure liquids were taken in a thoroughly cleansed and dried separatory funnel and a closed rubber tube was put over its outlet to keep out the thermostat liquid. The separatory funnel was then placed in a thermostat set at 30 °C, with frequent shaking. After the contents came to equilibrium, sufficient time was permitted for complete phase separation. Then an  $\sim 0.3$ - $\mu$ L sample (6, 7) was withdrawn from the desired phase by using a microliter syringe and quickly injected in the column of a gas chromatograph for chromatographic analyses (7) of the phase composition. While samples from the heavier phase are withdrawn, the microsyringe, with its plunger down, was inserted quickly in it and small quantities of the mixture were

Table IV. Experimental Densities  $\rho_m$  and Viscosities  $\eta_m$  and Corresponding Values of the Enthalpy of Activation  $\Delta H_m$ and Entropy of Activation  $\Delta S_m^*$  for Data Points in the Miscible Region of the Ternary System n-Hexane (1)-Benzyl Alcohol (2)-1-Hexanol (3) at Different Temperatures

|        |        |            |                                 |                        | $\Delta H_{\rm m}^{*}$ ,                     | $\Delta S_{m}^{*}$ , cal |
|--------|--------|------------|---------------------------------|------------------------|----------------------------------------------|--------------------------|
| $X_1$  | $X_2$  | t, °C      | $p_{m}$ ,<br>g mL <sup>-1</sup> | $\eta_{\rm m},{ m cP}$ | $\operatorname{cal} \operatorname{mol}^{-1}$ | $mol^{-1} K^{-1}$        |
| -      |        |            |                                 |                        |                                              |                          |
| 0.0534 | 0.3845 | 30         | 0.8840                          | 3.165                  | 8345.4                                       | +13.9                    |
|        |        | 40         | 0.8809                          | 2.493                  | 6676.3                                       | +8.22                    |
|        |        | 50         | 0.8773                          | 1.853                  | 5007.2                                       | +2.97                    |
|        |        | 60         | 0.8729                          | 1.476                  | 3338.2                                       | -2.07                    |
| 0.1235 | 0.4489 | 30         | 0.8881                          | 2.608                  | 5166.2                                       | +3.88                    |
|        |        | 40         | 0.8846                          | 2.038                  | 4689.3                                       | +2.29                    |
|        |        | 50         | 0.8809                          | 1.579                  | 4212.4                                       | +0.848                   |
|        |        | 60         | 0.8777                          | 1.275                  | 3735.6                                       | -0.558                   |
| 0.1819 | 0.3007 | 30         | 0.8464                          | 2.145                  | 4927.8                                       | +3.42                    |
|        |        | 40         | 0.8434                          | 1.705                  | 4450.9                                       | +1.82                    |
|        |        | 50         | 0.8386                          | 1.324                  | 4033.6                                       | +0.583                   |
|        |        | 60         | 0.8344                          | 1.097                  | 3576.6                                       | -0.803                   |
| 0.2246 | 0.5933 | 30         | 0.9044                          | 1.987                  | 4530.4                                       | +2.37                    |
|        |        | 40         | 0.9001                          | 1.591                  | 4371.4                                       | +1.82                    |
|        |        | 50         | 0.8936                          | 1.264                  | 4132.9                                       | +1.09                    |
|        |        | 60         | 0.8879                          | 1.045                  | 3974.0                                       | +0.592                   |
| 0.2915 | 0.6543 | 30         | 0.9129                          | 1.754                  | 4371.4                                       | +2.13                    |
|        |        | 40         | 0.9084                          | 1.426                  | 3974.0                                       | +0.795                   |
|        |        | 50         | 0.9016                          | 1.132                  | 3576.6                                       | -0.385                   |
|        |        | 60         | 0.8955                          | 0.9579                 | 3179.2                                       | -1.59                    |
| 0.3532 | 0.5166 | 30         | 0.8657                          | 1.369                  | 3576.6                                       | -0.077                   |
|        |        | 40         | 0.8611                          | 1.137                  | 3735.6                                       | +0.413                   |
|        |        | 50         | 0.8558                          | 0.9255                 | 3815.1                                       | +0.686                   |
|        |        | <b>6</b> 0 | 0.8510                          | 0.7902                 | 3974.0                                       | +1.11                    |
| 0.4342 | 0.1680 | 30         | 0.7787                          | 1.025                  | 3576.6                                       | +0.357                   |
|        |        | 40         | 0.7736                          | 0.8529                 | 3656.1                                       | +0.586                   |
|        |        | 50         | 0.7674                          | 0.7016                 | 3656.1                                       | +0.596                   |
|        |        | 60         | 0.7619                          | 0.5821                 | 3735.6                                       | +0.852                   |
| 0.5055 | 0.2381 | 30         | 0.7807                          | 0.8589                 | 3179.2                                       | -0.584                   |
|        |        | 40         | 0.7774                          | 0.7324                 | 3099.7                                       | -0.865                   |
|        |        | 50         | 0.7706                          | 0.6099                 | 305 <b>9.9</b>                               | -0.948                   |
|        |        | 60         | 0.7644                          | 0.5224                 | 3020.2                                       | -1.06                    |
| 0.5799 | 0.0739 | 30         | 0.7377                          | 0.6861                 | 3815.0                                       | +1.90                    |
|        |        | 40         | 0.7314                          | 0.5799                 | 3179.2                                       | -0.222                   |
|        |        | 50         | 0.7258                          | 0.5029                 | 2384.4                                       | -2.73                    |
|        |        | 60         | 0.7208                          | 0.4490                 | 1748.6                                       | -4.65                    |

sucked in and released after short intervals several times in order to avoid any contamination with the lighter phase. All precautions were taken to obtain sharp chromatograms and a standard technique (8) was adopted to determine the component concentrations of the samples from the peak areas. Component concentrations, so determined, when plotted on a triangular composition diagram, represent a data point on the binodal curve (9) for the corresponding ternary system. A CIC India Model AC 1-TC gas chromatograph was used.

A thoroughly cleansed, dried, and calibrated Ostwald viscometer was used for viscosity measurements and the experimental procedure adopted remained the same as described elsewhere (1-5, 10). Care was taken to keep the viscometer limbs vertical within 0.5° and limit the standard devlation for the time of flow within 0.1%. A Weld-type pycnometer of capacity about 25 mL was employed for density measurements (10), and distilled conductivity grade water with 0.99707 g mL<sup>-1</sup> as its density at 25 °C was used as reference liquid for calibration.

All the experimental measurements were carried out in a Toshniwal GL-15 precision thermostat. Bath temperatures were set and monitored to 0.01 °C with a Beckmann thermometer which had been standardized with a certified thermometer. For each measurement, sufficient time was allowed for thermal equilibrium to be attained and care was taken to minimize evaporation and limit the fluctuation in bath temperature within ±0.1 °C. The measured viscosities and densities were considered significant to four figures.

Table V. Experimental Densities  $\rho_m$  and Viscosities  $\eta_m$  and Corresponding Values of the Enthalpy of Activation  $\Delta H_m$ and Entropy of Activation  $\Delta S_m^*$  for Data Points in the Miscible Region of the Binary System n-Hexane (1)-Benzyl Alcohol (2) at Different Temperatures

| Miconol (2) at Different Temperatures |               |                    |                          |                          |                                |  |  |
|---------------------------------------|---------------|--------------------|--------------------------|--------------------------|--------------------------------|--|--|
|                                       |               | $\rho_{m}$         | _                        | $\Delta H_{\rm m}^{*}$ , | $\Delta S_{\mathrm{m}}^{*}$ ,  |  |  |
| $X_1$                                 | <i>t</i> , °C | g mL <sup>-1</sup> | $\eta_{\rm m},~{\rm cP}$ | cal mol <sup>-1</sup>    | cal mol <sup>-1</sup> $K^{-1}$ |  |  |
|                                       | E             | Binary Rie         | ch in Ben                | zyl Alcohol              |                                |  |  |
| 0.0000                                | 30            | 1.043              | 4.609                    | 5394.7                   | +3.74                          |  |  |
|                                       | 40            | 1.034              | 3.328                    |                          |                                |  |  |
|                                       | 50            | 1.027              | 2.539                    |                          |                                |  |  |
|                                       | 60            | 1.019              | 1.997                    |                          |                                |  |  |
| 0.0312                                | 30            | 1.026              | 4.044                    | 5098.2                   | +2.97                          |  |  |
|                                       | 40            | 1.018              | 3.013                    |                          |                                |  |  |
|                                       | 50            | 1.011              | 2.360                    |                          |                                |  |  |
|                                       | 60            | 1.004              | 1.852                    |                          |                                |  |  |
| 0.0645                                | 30            | 1.011              | 3.832                    | 4967.5                   | +2.71                          |  |  |
|                                       | 40            | 1.004              | 2.754                    |                          |                                |  |  |
|                                       | 50            | 0.9965             | 2.173                    |                          |                                |  |  |
|                                       | 60            | 0.9888             | 1.712                    |                          |                                |  |  |
| 0.0976                                | 30            | 0.9965             | 3.350                    | 4922.7                   | +2.75                          |  |  |
|                                       | 40            | 0.9893             | 2.394                    |                          |                                |  |  |
|                                       | 50            | 0.9816             | 1.974                    |                          |                                |  |  |
| 0 1 0 1 0                             | 60            | 0.9743             | 1.594                    | 4010 5                   | 10.50                          |  |  |
| 0.1313                                | 30            | 0.9826             | 3.119                    | 4813.5                   | +2.58                          |  |  |
|                                       | 40            | 0.9751             | 2.256                    |                          |                                |  |  |
|                                       | 50            | 0.9675             | 1.790                    |                          |                                |  |  |
| 0 1659                                | 60            | 0.9603             | 1.465                    | 4490.6                   | ±1.77                          |  |  |
| 0.1653                                | 30            | $0.9679 \\ 0.9602$ | 2.649<br>2.004           | 4490.0                   | +1.77                          |  |  |
|                                       | 40<br>50      | 0.9529             | 2.004<br>1.616           |                          |                                |  |  |
|                                       | 60            | 0.9329             | 1.349                    |                          |                                |  |  |
| 0.2056                                | 30            | 0.9506             | 2.328                    | 4126.2                   | 0.790                          |  |  |
| 0.2000                                | 40            | 0.9434             | 1.827                    | 4120.2                   | 0.150                          |  |  |
|                                       | 50            | 0.9362             | 1.455                    |                          |                                |  |  |
|                                       | 60            | 0.9282             | 1.291                    |                          |                                |  |  |
| 0.2550ª                               | 30            | 0.9295             | 1.972                    | 3665.7                   | -0.429                         |  |  |
| 0.2000                                | 40            | 0.9225             | 1.615                    | 0000                     | 0.120                          |  |  |
|                                       | 50            | 0.9176             | 1.327                    |                          |                                |  |  |
|                                       | 60            | 0.9126             | 1.113                    |                          |                                |  |  |
|                                       |               | -                  |                          |                          |                                |  |  |
| 0.05000                               |               |                    | Rich in n                |                          |                                |  |  |
| 0.8792                                | 30            | 0.6984             | 0.3644                   | 1399.6                   | -4.84                          |  |  |
|                                       | 40            | 0.6899             | 0.3351                   |                          |                                |  |  |
|                                       | 50            | 0.6805             | 0.3066                   |                          |                                |  |  |
| 0.0550                                | 60            | 0.6710             | 0.2825                   | 1000 0                   | 0.00                           |  |  |
| 0.9550                                | 30<br>40      | $0.6733 \\ 0.6650$ | $0.3264 \\ 0.3024$       | 1630.6                   | -3.89                          |  |  |
|                                       | 40<br>50      | 0.6556             | 0.3024<br>0.2680         |                          |                                |  |  |
|                                       | 60            | 0.6458             | 0.2680                   |                          |                                |  |  |
| 0.9699                                | 30            | 0.6684             | 0.2456                   | 1562.1                   | -4.072                         |  |  |
| 0.3033                                | 40            | 0.6600             | 0.2996                   | 1002.1                   | -4:072                         |  |  |
|                                       | 50            | 0.6505             | 0.2619                   |                          |                                |  |  |
|                                       | 60            | 0.6407             | 0.2381                   |                          |                                |  |  |
| 0.9799                                | 30            | 0.6648             | 0.3115                   | 1541.6                   | -4.103                         |  |  |
| 0.0100                                | 40            | 0.6571             | 0.2915                   | 101110                   |                                |  |  |
|                                       | 50            | 0.6472             | 0.2575                   |                          |                                |  |  |
|                                       | 60            | 0.6374             | 0.2365                   |                          |                                |  |  |
| 0.9899                                | 30            | 0.6620             | 0.3034                   | 1456.7                   | -4.337                         |  |  |
|                                       | 40            | 0.6535             | 0.2835                   | -                        |                                |  |  |
|                                       | 50            | 0.6439             | 0.2541                   |                          |                                |  |  |
|                                       | 60            | 0.6340             | 0.2330                   |                          |                                |  |  |
| 1.0000                                | 30            | 0.6588             | 0.2935                   | 1358.4                   | -4.603                         |  |  |
|                                       | 40            | 0.6502             | 0.2735                   |                          |                                |  |  |
|                                       | 50            | 0.6405             | 0.2505                   |                          |                                |  |  |
|                                       | 60            | 0.6305             | 0.2301                   |                          |                                |  |  |

<sup>e</sup>Binary saturated at 30 °C.

## **Results and Discussion**

Experimental viscosity-composition-temperature data for mixture compositions in the miscible region at 30, 40, 50, and 60 °C are listed in Tables II-V. Similar data for mixture compositions which fall on the binodal curves at 30 °C and in the miscible region at 40, 50 and 60 °C are listed in Tables

Table VI. Experimental Densities  $\rho_m$  and Viscosities  $\eta_m$  and Corresponding Values of the Enthalpy of Activation  $\Delta H_m^{+}$ and Entropy of Activation  $\Delta S_m^{+}$  for Data Points Which Fall on the Binodal Curve at 30 °C and in the Miscible Region at 40, 50, and 60 °C of the Ternary System *n*-Hexane (1)-Benzyl Alcohol (2)-Toluene (3)

|        |        |               | $\rho_{m}$ ,       |                          | $\Delta H_{m}^{*}$ ,  | $\Delta S_{m}^{*}$ ,                  |
|--------|--------|---------------|--------------------|--------------------------|-----------------------|---------------------------------------|
| $X_1$  | $X_2$  | <i>t</i> , °C | g mL <sup>-1</sup> | $\eta_{\rm m},~{\rm cP}$ | cal mol <sup>-1</sup> | cal mol <sup>-1</sup> K <sup>-1</sup> |
| 0.3306 | 0.6043 | 30            | 0.8855             | 1.443                    | 4371.4                | +2.48                                 |
|        |        | 40            | 0.8770             | 1.198                    | 3735.6                | +0.347                                |
|        |        | 50            | 0.8715             | 0.9889                   | 3199.1                | -1.32                                 |
|        |        | 60            | 0.8640             | 0.8373                   | 2543.4                | -3.28                                 |
| 0.4672 | 0.4288 | 30            | 0.8270             | 0.9325                   | 3854.8                | +1.58                                 |
|        |        | 40            | 0.8207             | 0.0121                   | 3179.2                | -0.726                                |
|        |        | 50            | 0.8135             | 0.6923                   | 2384.4                | -3.20                                 |
|        |        | 60            | 0.8059             | 0.6163                   | 1748.6                | -5.12                                 |
| 0.6099 | 0.2755 | 30            | 0.7691             | 0.5872                   | 6517.4                | +11.2                                 |
|        |        | 40            | 0.7617             | 0.5200                   | 4212.4                | +3.38                                 |
|        |        | 50            | 0.7526             | 0.4609                   | 2384.4                | -2.48                                 |
|        |        | 60            | 0.7417             | 0.4311                   | 556.4                 | -8.08                                 |
| 0.6954 | 0.2093 | 30            | 0.7455             | 0.5186                   | 2702.3                | -1.16                                 |
|        |        | 40            | 0.7386             | 0.4553                   | 2265.2                | -2.60                                 |
|        |        | 50            | 0.7302             | 0.4103                   | 1748.6                | -4.24                                 |
|        |        | 60            | 0.7224             | 0.3730                   | 1430.6                | -5.20                                 |
| 0.8267 | 0.1429 | 30            | 0.6974             | 0.3656                   | 2384.4                | -1.60                                 |
|        |        | 40            | 0.6894             | 0.3302                   | 1589.6                | -4.22                                 |
|        |        | 50            | 0.6818             | 0.3023                   | 1072.9                | -5.82                                 |
|        |        | 60            | 0.6733             | 0.2833                   | 794.8                 | -6.66                                 |
| 0.2883 | 0.6944 | 30            | 0.9277             | 1.734                    | 3576.6                | -0.429                                |
|        |        | <b>4</b> 0    | 0.9195             | 1.489                    | 3497.1                | -0.785                                |
|        |        | 50            | 0.9116             | 1.215                    | 3417.6                | -1.00                                 |
|        |        | 60            | 0.9034             | 1.019                    | 3338.2                | -1.23                                 |
| 0.8149 | 0.1215 | 30            | 0.7072             | 0.3932                   | 3497.1                | +1.95                                 |
|        |        | 40            | 0.6994             | 0.3423                   | 2066.5                | -2.73                                 |
|        |        | 50            | 0.6906             | 0.3163                   | 1231.9                | -5.38                                 |
|        |        | 60            | 0.6838             | 0.2977                   | 1112.7                | -5.76                                 |
| 0.2722 | 0.6929 | 30            | 0.9234             | 1.713                    | 3974.0                | +0.887                                |
|        |        | 40            | 0.9206             | 1.430                    | 3735.6                | +0.053                                |
|        |        | 50            | 0.9132             | 1.203                    | 3576.6                | -0.482                                |
|        |        | 60            | 0.9055             | 1.006                    | 3417.6                | -0.958                                |
| 0.7576 | 0.1544 | 30            | 0.7236             | 0.4752                   | 2821.5                | -0.598                                |
|        |        | 40            | 0.7172             | 0.4181                   | 2781.8                | -0.785                                |
|        |        | 50            | 0.7129             | 0.3705                   | 2622.8                | -1.34                                 |
| 0.010  | 0.000- | 60            | 0.7047             | 0.3192                   | 2543.4                | -1.56                                 |
| 0.3124 | 0.6201 | 30            | 0.9049             | 1.474                    | 4609.8                | +3.26                                 |
|        |        | 40            | 0.8973             | 1.265                    | 3894.5                | +0.79                                 |
|        |        | 50            | 0.8900             | 1.076                    | 3576.6                | -0.292                                |
|        |        | <b>6</b> 0    | 0.8829             | 0.8599                   | 3536.9                | -0.316                                |

VI-VIII. In order to calculate the free energy of activation,  $\Delta G^*$ , of the viscous flow in a liquid mixture, the Eyring equation was used in the following form

$$\eta_{\rm m} = (hN/V_{\rm m}) \exp(\Delta G_{\rm m}^*/RT) \tag{1}$$

with

$$V_{\rm m} = \sum X_{\rm I} M_{\rm I} / \rho_{\rm m} \tag{2}$$

$$\Delta G_{m}^{*} = \Delta H_{m}^{*} - T \Delta S_{m}^{*}$$
(3)

where  $\rho_m$  is the mixture density at *T* K,  $M_1$  is the molecular weight of the mixture component i, while  $\Delta H_m^*$  and  $\Delta S_m^*$  are the enthalpy and the entropy of activation of viscous flow, respectively. The remaining symbols have been defined earlier. Incorporating eq 3 in eq 1 and plotting  $\ln (\eta_m V_m)$  against 1/T for each ternary system studied, it was found that the plots show a curvature which indicates that  $\Delta H_m^*$  values are not altogether temperature-invariant. As such, the  $\Delta H_m^*(T)$  values were obtained from the slopes of the curves at corresponding *T*. However, in the case of the partially miscible binary system *n*-hexane (1)-benzyl alcohol (2), similar  $\ln (\eta_m V_m)$  vs. 1/T plots are linear, showing that  $\Delta H_m^*$  as calculated from the corresponding slope for this system is constant in the temperature range studied. The value of  $\Delta H_m^*$  so obtained, together with

Table VII. Experimental Densities  $\rho_m$  and Viscosities  $\eta_m$ and Corresponding Values of the Enthalpy of Activation  $\Delta H_m^*$  and Entropy of Activation  $\Delta S_m^*$  for Data Points Which Fall on the Binodal Curve at 30 °C and in the Miscible Region at 40, 50, and 60 °C of the Ternary System *n*-Hexane (1)-Benzyl Alcohol (2)-Chlorobenzene (3)

|        |        |               | ρ <sub>m</sub> ,   |                        | $\Delta H_{m}^{*}$ ,  | $\Delta S_{m}$ *,                     |
|--------|--------|---------------|--------------------|------------------------|-----------------------|---------------------------------------|
| $X_1$  | $X_2$  | <i>t</i> , °C | g mL <sup>-1</sup> | $\eta_{\rm m},{ m cP}$ | cal mol <sup>-1</sup> | cal mol <sup>-1</sup> K <sup>-1</sup> |
| 0.3883 | 0.5499 | 30            | 0.8742             | 1.267                  | 6080.2                | +8.35                                 |
|        |        | 40            | 0.8669             | 0.9706                 | 5007.2                | +4.79                                 |
|        |        | 50            | 0.8594             | 0.7899                 | 3974.0                | +1.49                                 |
|        |        | 60            | 0.8518             | 0.6677                 | 2861.3                | -1.90                                 |
| 0.5568 | 0.3535 | 30            | 0.8075             | 0.7191                 | 4530.4                | +4.27                                 |
|        |        | 40            | 0.8009             | 0.5931                 | 3874.7                | +2.07                                 |
|        |        | 50            | 0.7931             | 0.5034                 | 3179.2                | -0.167                                |
|        |        | 60            | 0.7850             | 0.4249                 | 2543.4                | -2.05                                 |
| 0.5578 | 0.3624 | 30            | 0.8066             | 0.7949                 | 4768.8                | +4.86                                 |
|        |        | 40            | 0.7992             | 0.6113                 | 3974.0                | +2.32                                 |
|        |        | 50            | 0.7912             | 0.5285                 | 3338.2                | +0.232                                |
|        |        | 60            | 0.7825             | 0.4502                 | 2702.3                | -1.69                                 |
| 0.7731 | 0.1831 | 30            | 0.7308             | 0.4645                 | 3815.0                | +2.68                                 |
|        |        | 40            | 0.7235             | 0.3808                 | 2702.3                | -0.902                                |
|        |        | 50            | 0.7152             | 0.3400                 | 2225.4                | -2.43                                 |
|        |        | 60            | 0.7074             | 0.3036                 | 2066.5                | -2.91                                 |
| 0.3494 | 0.6171 | 30            | 0.9019             | 1.443                  | 3974.0                | +1.02                                 |
|        |        | 40            | 0.8992             | 1.204                  | 3735.6                | +0.361                                |
|        |        | 50            | 0.8932             | 0.9997                 | 3656.1                | +0.102                                |
|        |        | 60            | 0.8851             | 0.8254                 | 3576.6                | -0.113                                |
| 0.8088 | 0.1590 | 30            | 0.7111             | 0.3982                 | 3020.2                | -0.162                                |
|        |        | 40            | 0.7039             | 0.3498                 | 2781.8                | -0.505                                |
|        |        | 50            | 0.6954             | 0.3194                 | 2503.6                | -1.49                                 |
|        |        | 60            | 0.6879             | 0.2820                 | 1589.6                | -4.23                                 |
| 0.2841 | 0.6933 | 30            | 0.9207             | 1.699                  | 3894.5                | +0.615                                |
|        |        | 40            | 0.9153             | 1.397                  | 3815.0                | +0.327                                |
|        |        | 50            | 0.9093             | 1.159                  | 3735.6                | +0.061                                |
|        |        | 60            | 0.9016             | 0.9345                 | 3616.3                | -0.232                                |
|        |        |               |                    |                        |                       |                                       |

Table VIII. Experimental Densities  $\rho_m$  and Viscosities  $\eta_m$ and Corresponding Values of the Enthalpy of Activation  $\Delta H_m^*$  and Entropy of Activation  $\Delta S_m^*$  for Data Points Which Fall on the Binodal Curve at 30 °C and in the Miscible Region at 40, 50, and 60 °C of the Ternary System *n*-Hexane (1)-Benzyl Alcohol (2)-1-Hexanol (3)

| v                 | v      | 4 00          | $\rho_{\mathbf{m}},$ |                           | $\Delta H_{\rm m}^{*}$ , | $\Delta S_{m}^{*}$ ,                  |
|-------------------|--------|---------------|----------------------|---------------------------|--------------------------|---------------------------------------|
| $\underline{X_1}$ | $X_2$  | <i>t</i> , °C | g mL <sup>-1</sup>   | $\eta_{\rm m},  {\rm cP}$ | cal mol <sup>-1</sup>    | cal mol <sup>-1</sup> K <sup>-1</sup> |
| 0.4718            | 0.4837 | 30            | 0.8280               | 1.035                     | 4927.8                   | +4.88                                 |
|                   |        | 40            | 0.8213               | 0.8179                    | 4013.7                   | +1.98                                 |
|                   |        | 50            | 0.8132               | 0.7286                    | 3179.2                   | -0.869                                |
|                   |        | 60            | 0.8046               | 0.6039                    | 2384.4                   | -3.20                                 |
| 0.5203            | 0.4189 | 30            | 0.8057               | 0.9024                    | 5007.2                   | +5.39                                 |
|                   |        | 40            | 0.7994               | 0.7245                    | 3854.8                   | +1.60                                 |
|                   |        | 50            | 0.7918               | 0.6234                    | 3179.2                   | -0.589                                |
|                   |        | 60            | 0.7835               | 0.5181                    | 2543.4                   | -2.45                                 |
| 0.3379            | 0.6289 | 30            | 0.8853               | 1.565                     | 5881.5                   | +7.28                                 |
|                   |        | 40            | 0.8776               | 1.219                     | 4768.8                   | +3.59                                 |
|                   |        | 50            | 0.8707               | 0.9930                    | 3735.6                   | +0.312                                |
|                   |        | 60            | 0.8627               | 0.8321                    | 2702.3                   | -2.81                                 |
| 0.6549            | 0.3011 | 30            | 0.7599               | 0.6612                    | 4768.8                   | +5.16                                 |
|                   |        | 40            | 0.7521               | 0.5387                    | 3576.6                   | +1.24                                 |
|                   |        | 50            | 0.7439               | 0.4663                    | 2583.1                   | -1.92                                 |
|                   |        | 60            | 0.7355               | 0.4045                    | 1828.0                   | -4.17                                 |
| 0.7579            | 0.2197 | 30            | 0.7395               | 0.5275                    | 3179.2                   | +0.362                                |
|                   |        | 40            | 0.7339               | 0.4627                    | 2861.3                   | -0.743                                |
|                   |        | 50            | 0.7256               | 0.4004                    | 2702.3                   | -1.26                                 |
|                   |        | 60            | 0.7170               | 0.3482                    | 2702.3                   | -1.25                                 |
| 0.3599            | 0.6106 | 30            | 0.8600               | 1.342                     | 5325.2                   | +5.70                                 |
|                   |        | 40            | 0.8545               | 1.041                     | 4291.9                   | +2.34                                 |
|                   |        | 50            | 0.8473               | 0.8626                    | 3735.6                   | +0.545                                |
|                   |        | 60            | 0.8409               | 0.7149                    | 3417.6                   | -0.396                                |
| 0.8353            | 0.1581 | 30            | 0.6867               | 0.3752                    | 3020.2                   | +0.403                                |
|                   |        | <b>4</b> 0    | 0.6791               | 0.3273                    | 2384.4                   | -1.71                                 |
|                   |        | 50            | 0.6703               | 0.2896                    | 1847.9                   | -3.38                                 |
|                   |        | 60            | 0.6609               | 0.2581                    | 1669.1                   | -3.88                                 |
| 0.3001            | 0.6751 | 30            | 0.9133               | 1.729                     | 4927.8                   | +3.98                                 |
|                   |        | 40            | 0.9066               | 1.427                     | 4192.6                   | +1.48                                 |
|                   |        | 50            | 0.9005               | 1.199                     | 3179.2                   | -1.72                                 |
|                   |        | 60            | 0.8935               | 1.004                     | 3417.6                   | -0.977                                |

the  $\Delta G_m^*$  values calculated by eq 1 were then used to calculate the corresponding  $\Delta S_m^*$  by using eq 3. Also, the nonlinearity of the ln  $(\eta_m V_m)$  vs. 1/T plots suggests that the mechanism of viscous flow involves more than one thermally activated process whereas in the case of the binary subsystem n-hexane (1)-benzyl alcohol (2), the viscous flow is a single thermally activated process as indicated by the linear in  $(\eta_m V_m)$  vs. 1/T plots. The results as included in Tables II-VIII show that  $\Delta H_m^*$  values are all positive and decrease with the increase of temperature while  $\Delta S_m^*$  values are positive at 30 °C in most cases, show a decreasing trend with increasing temperature, and ultimately become negative.

These trends are similar to those observed for completely miscible ternary systems reported earlier (1-5) and support the suggestion that sufficient number of alcohol monomers are not available in these ternaries at lower temperature in order to facilitate the viscous flow via activated state of the monomeric molecular species, resulting in comparatively higher values of  $\Delta S_m^*$ . However, as the temperature increases, an increase in alcoholic monomers due to breaking of H bonds in the system studied leads to more disorder and consequently higher entropy of unactivated molecular species in comparison to activated ones giving lower  $\Delta S_m^*$  which ultimately become negative at sufficiently higher temperature. Thus for the ternary system n-hexane (1)-benzyl alcohol (2)-1-hexanol (3) with two alcoholic components, mixture compositions having  $(X_2 + X_3) >$ 0.9, which are expected to have comparatively more increased H bonding and lesser availability of monomeric species, should give comparatively much higher  $\Delta {\cal S}_{\rm m}{}^{\rm \sharp}$  . Actually this is the case with a ternary mixture of n-hexane (1)-benzyl alcohol (2)-1hexanol (3) having  $(X_2 + X_3) = 0.9466$  which gives  $\Delta S_m^* =$ 13.9 cal mol<sup>-1</sup> K<sup>-1</sup>, a much higher value in comparison to other ternaries with lesser total alcoholic concentration.

#### Glossarv

- $\Delta G^{\dagger}$ free energy of activation of viscous flow  $\Delta H^{\dagger}$ enthalpy of activation of viscous flow
- $\Delta S^*$ entropy of activation of viscous flow
- Planck's constant h
- М molecular weight

- nD refractive index
- N Avogadro's number
- R universal gas constant
- v molar volume, cm<sup>3</sup> mol<sup>-1</sup>
- Х mole fraction

## Greek Letters

| $\eta$ absolute | viscosity, cP |
|-----------------|---------------|
|-----------------|---------------|

ρ density, a mL-1

#### Subscripts

- i. component in a mixture
- m mixture
- 1.2.3 component number in a mixture

Registry No. n-Hexane, 110-54-3; toluene, 108-88-3; benzyl alcohol, 100-51-6; chlorobenzene, 108-90-7; 1-hexanol, 111-27-3,

#### **Literature Cited**

- Singh, R. P.; Sinha, C. P. Indian J. Chem., Sect. A 1983, 22A, 282.
   Singh, R. P.; Sinha, C. P. Z. Phys. Chem. (Leipzig) 1984, 265, 593.
   Singh, R. P.; Sinha, C. P. J. Chem. Eng. Data 1984, 29, 132.
   Singh, R. P.; Sinha, C. P. J. Chem. Eng. Data 1985, 30, 38.
   Singh, R. P.; Sinha, C. P. J. Chem. Eng. Data 1985, 30, 470.
   Berg, E. W. "Physical and Chemical Methods of Separation"; McGraw-Hill: New York, 1963; p 120.
   Sedivec, V.; Flek, J. "Handbook of Analysis of Organic Solvents"; Helsted Press: New York. 1976: n 74.
- Halsted Press: New York, 1976; p 74. Bobbitt, J. M.; Schwarting, A. E.; Gritter, R. J. "Introduction to
- (8) Chromatography"; Von Nostrand Reinhold: New York, 1968; p 135. King, M. B. "Phase Equilibrium in Mixtures"; Pergamon Press: New York, 1969; p 158. (9)
- Daniels, F.; Williams, J. W.; Bender, P.; Alberty, A. R.; Cornwell, C. D.; Harriman, J. E. "Experimental Physical Chemistry", 6th ed.; McGraw-Hill-Kogakusha: New York, 1970; p 164. Riddick, A.; Bunger, W. B. "Organic Solvents"; Wiley-Interscience: (10)
- (11)
- (11) Hodick, A.; Bunger, W. B. Organic Solvents, Wiey-Interscience. New York, 1970; Vol. 2.
   (12) Timmermans, J. "Physico Chemical Constants of Pure Organic Compounds"; Elsevier: New York, 1950.
   (13) Marsden, C.; Seymour, M. "Solvent Guide", 2nd ed.; Cleaver Hume
- Press: London, 1963.

Received for review February 14, 1985. Revised manuscript received July 16, 1985. Accepted: August 1, 1985. We are grateful to the authorities of Bhagalpur College of Engineering, Bhagalpur, for providing laboratory facili-